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1. Su—anr 

Thit paper deals with tine series which are stationary in the mean but 

which have a nonstationary convariance function which is described by a 

certain parametric model* The non-stationarity results from changes over time 

of the parameters in the model. 

The first part of this paper discusses the concepts of etationarity, 

covarisnce, and the spectrum. The concept of temporal spectrum is introduced 

and applied to the analysis of the nonstationary time series« 

The second part deals with the parametric model. Statistics related 

to the rate of sero~axis crossings and the rate of relative maxima and minima 

of the time series are used to estimate the parameters in the model. These 

estimates are eaey to compute from discrete observations of the time series. 

Expreesions for the variances of these estimators are given as a function of 

the parameters and the sampling period. 

2. The Spectrum 

In the analysis of time series data, a major problem is the character- 

isation of the time series by means of some parameters or functions.    For 

example, if X(t) denotes the signal picked up by the antenna of an FM radio, 

the AGC    (automatic gain control)circuit estimates the average power E(A (t)) 

and corrects the gain to equalize variations over time in this parameter.    In 

order for this system to be effective,  the average power parameter must be 

varying slowly enough so that we can obtain reasonably accurate estimates 

of the parameter given a finite record of X(t).    We must be able to distinguish 

changes in the characterization parameters from transient changes, just 

"ordinary noise,*'of the time series. 



The quest for slowly varying basic parameters leads us to the concept 

of statlonarlty. A time series X(t) Is called strictly stationary if for all 

n, the Joint distribution cf (xCt.), «..^XCt )} is the sams as that for 

{XC^ ♦ h),...,X(tn ♦ h)) for all h, Doob [2], X(t) is called weakly 

stationary if the density of X(t) is the same for all t, and for all t. and t-, 

the Joint density of (X(t.), X(t2))depends only on I t- - t. | . Then the power 

spectrum S(f) and the autocovariance function RCtr) *re functions associated 

with X(t), where 

s(f) - /  exp^TrftJRCtDdf 

(1) J~<* 

R(r) - E (x(t*r) x(t)) 

With the assumption that  J  | Rff) | d f < oo, we then hare 
o 

cos 2^f rs(f)df 

and by differentiating and setting 't' - 0, we have 

R"(0) - -(2 7r)2   J  f2S(f)df 

(2) 

Ra)(0) - Utrt  /f4S(f)df 

If we normalize X(t) such that E(X(t)) - 0 and E(X2(t)) - 1, then the 

even function, R(T) " RC-'tOf  is called the autocorrelation function and 

S(f) is called the power spectral density.    The word density applies since 

/ S(f)df - E(X2(t)) from (l) and (2.  and thus     J S(f)df - 1. 

Given a finite record of X(t), of length T seconds, there are several ways 

to obtain an estimate of the spectrum, see Bartlett [1] and Grenander and 



Rotsnblatt [3]. Th«8« digital prooodurts or a good analog spectral analyttr 

gif»,  as a function of the observations In the record of X(t)l a random 

function ST(f) such that for arqr band (f^ f1)l (Mlddleton [14]) 

(3) y^1 ST(f)df  */^  1 S(f)df  aa T— 00 , 

It can be shown that if we pass X(t) through a linear, time invariant 

filter which filters out (analogous to an optical filter) all frequencies 

except thoee in the band (f^f,), then with X, ,r  (t) denoting this 

filtered tine series. 

y    s(f)df - E{X? f :t) ) . 
T« r0'rl "0 

The expected \'alue of the square nf a time ssries is called the average power 

of that series.    Thus (4) shows that ths area under S(f) for f in (f^ f.) 

gives the average power of X(t) in the band, and (3) shows that ths integral 

of ST(f) over (f^fj) i> A consistent estimate (Wilks [13] ) of this average 

power. 

Moreover, if X(t) is ergodic (Doob [ 2] } then with probability one 

.       T 
E{X(t)} -llmT^oo T"1   J     X(t)dt 

R (T)    -   limj _ ^  T"1   T X(t ♦ T) X (t) dt 
o 



By using the Chcbjrohev inequality and the Gaussian nature of X(t)t we havs 

fro« (5) 

(6)      RpCr) -T'y     x(t*r)x(t)dt 

-R(r) ♦ op (r1) 

where FL, is called the sample autocorrelation of X(t) and 0 (T" ) -* 0 

in probability« Thus from (/») and (6) we have 

T ^ 

(7)   T"1 f  X? f  (t)dt - f     S(f)df ♦ 0B (r1) 

i     'O'^ \ P 

which suggests that we use the above tins average of XI   # . the filtered 
r0»rl 

tine series, as sn estimator Su(f) of ths average power for f in th« band 

(f0. tj. 

To do spectral estimation as above, using analog methods, requires a 

set of narrowband filters covering a large frequency range. 

But suppose that X(t) is stationary in the mean but not in the covariance, 

or more specifically that although E(X(t)) - 0 for all t, the Joint density 

of (X(t), X(t ♦f)) depends on t. In this oaee, ^(f) ie an estimate of ths 

average power for f ie a band, but averaged over distribution ohangee during 

the sampling period. The basic difficulty is that we must distinguish variations 

in X(t) due to "ordinary noise" versus changes over time in the stmoture of the 
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tlM ■•rlM. In order to handl« tho problom wo would llkt to oharaotorit« 

tho nonotAtlonary X(t) by oom fonoralitatlon of tho powor •poctniBt tueh 

a« propoood by SllTormtn M,   Othor «xtonslono of •pootral mthodt to 

nonftaticnAiy proceesos art given by Pago [11] and Laapard [12]. Howoror« 

wo will troat tht problm in oomowhat of a houriatio aanntr. 

Wo will roitrict ouroolroo to •tatlonary Oautoian tiao torioo X(t) 

with S(X(t)) - 0 and E(?t2(t)) - 1 for all t, and auch that firon a rocord 

of langth T unita  the joint denaity of (XCtJ, X(t2)) ia a function of 

| t2 - tjl for t1 and t2 in the T unit period, i.e. X(t) ia weakly 

atationaiy duHng that period. 

Purtheraore» aeauae that there exiats a /c< T for  112 - t J >^ 

there ia a conatant A and an integer « auch that 

(8)       |E(X(t2)X(t1)) j < A ^-s 
Thia naana that for laga greater than tAha time aeriea ia approxioately 

unoorrelated. 

Now define a function S(f), called the temporal apectral denaity, auch 

that aa a ganeralisatlon of the deflnltlona (1) and (2) 

(9) 3(0-2/  coa 2 7rfrR(r)d'r 
y0 

where for |-^| <    T 

do) R(r) - £(x(t + -r )x(t)) 



It can b« shown using (7), (6), (9),and (10) that 

fl 2 rT 

(11) f      S(f)df-E(Xf    f     (t)) ♦ Od'1) -/   X2,   f (t)dt ♦ OJT"1) 

r0 ü 

whsrt X.   .   is the result of a linear narrowband filtering operation on 
r0»rl 

X(t) for the (f^ f^ band. 

Moreover for \'X \    < 'X     bjr taking the invsrse ooeine   transfom, 

(12) R(f)     A   2    I       oos   2trfr3(f)df 

0 

for the temporal speotrua S(f), and girsn the condition that E(X^(t)) • 1, 

we then hare 

/*> 
J  S(f)df A 1  . 
-oo 

Suppose we have a finite record of X(t) during which X(t) is stationary 

and we wish to estimate the temporal spectral dsnsitgr S(f) for f in some 

frequency band,    ''e could use the method of narrowband filtering (see (7) and 

(11) ) to estimate S(f).    However, in many applications the period of stationary 

is so short as to make the spectral estimates which are functions of observa- 

tions taken in the period, quite inaccurate.    For example, the ambient sea 

noise, as measured by hydrophones placed in the deep ocean, is often quite 

nonstationary due to sudden changes in the paths of propagation of 

sounds in the ocean. If «re wish 



accurate spectral estimates for f In a relatively wide band, in many applica- 

tions we have to take a record of X(t) which is longer than the period of 

•tationarity, and thus the temporal spectrum approach is not meaningful since 

we have averaged over a change in structure. 

However, suppose we know from theoretical considerations, or fron past 

experimentation, that when the time series has a period of stationarity, 

the temporal spectral density S(f) is one of a certain parametric family of 

density functions.    For example, suppose we can say that 

(13) S(f) -   YHT)    (x if jr-l   9   A|f 

where    r   and     K are two unkncMn parameters.    In this case we have S(f) 

described by a family of Gamma densities (Figures 1 and 2),    For different 

stationarity psrWs, r      and \ take different values.    We thus have reduced 

the nonstationarity of X(t) to the changes of two (or in general a finite 

set) parameters in the temporal spectrum.    From (12) we see that the auto- 

correlation function R('tr) is a nonstationary function of these time varying 

parameters. 

However, a stationary X(t) ^ith a spectral density as in (13) is 

deterministic (Doob [2]) since 

oo 
(1 ♦ f2)'1 log S(f)df - - oo 

♦ ♦ 
This means that r^Lven a time t , the random variable X(t ) can be estimated 

with zero variance by a random variable Y(t ) which is the result of a certain 
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linear operation on the record of the infinite pa et, i.e. on X(t) for all 
* 

t < t •    But since we are dealing with nonetationary tine eeriea, resulte 

based upon observations over the infinite past do not seen to be relevant* 

3,    Parametric Model for the Temporal Spectrun 

Suppose we make diacrete observatione of a Gaussian tine aeries X(t) 

during a stationary period where the temporal spectrun S(f) is a Canaa density 

parameterized by r and \ - as is f^ven by (13)* i«e. 

(13)*        S(f) - jj^y    (\f)r-1 e-Xf      f > 0 

We wish to estimate r and \ from the discrete observations.    The estinators 

are of no use if, in order to obtain relatively accurate estinatee of r and k, 

we need a sampling period longer than the period of stationarlty of X.    Any 

eetinators    r   and \   based on observations taken over time frcm X(t) will 

have two components of randomness,  the first due to the stationary randcn 

fluctuations over time of X(t), and the second due to the changes in the 

covariance of X(t) which recur from time-to-time* 

The rate of sero-axis crossings of X(t) in an interval (0,T) is a 

consistent estimator of 0 ■ 2[J r S(f)df]    '    as T-»a), and the rate 

of relative maxima and minima of X in (0,T) ie a consistent eetinator of 

8    m Xj f/*S(f)df/ J f2S(f)df]1//2 * We will express r and \ as functions 

of P and p , r ■ f(3,P  ) and \ • g(P#P ),  and estimate r and \ by 

r • f(P,P } and \ - g(PfP ) where p is related to the rate of aero-crossings 

and p    is related to the rate of maxima and minima, but they are easy to 

conpute from discrete clipping of X(t), which we will deecribe later*    The 



I.- 

conslttency of the estimators Is not Important due to the   nonstatlonarlty ef 

X(t).    For the estimators to be of real value in this context, their variances 

should decrease relatively rapidly with increase in the period of sampling. 

In this work we will obtain the variances for the estimators of ß and 0    as 

functions of r, X,      and T.    For the case of low frequencies, that is for the 

mean frequency    J   |f  | S(f)df -   r/\ in the range 20 cpe to UO ops, 

calculations (Hinich  [I»])  show that the standard deviation of the estimates 

of ß and ß   is less than 10^ of ß for a sampling period of two eecondy and 

less than 5% of ß for a sampling period of ten seconds. 

Suppose we sample X(t) in a discrete manner by observing every V time 

units whether the time series is positive or negative.    If X is positive, 

we mark a 1, if negative we mark a - 1, i.e. we define a discrete time 

series X   where for each integer k 

,1      if X(kT) >   0 

(u)       x*(kTr) -  J 

^-i    if x(kTr) <  o 

This is simply the discrete version of infinite clipping (Lawson and Uhlen- 

beck [ 5] ).    With the advent of high speed sampling techniques using digital 

electronics, it is a standard procedure to subject a random process to 

Infinite clipping in order to reduce the data and put it into a convenient 

form (a strinp of binary numbers) for real-time analysis.    The estimators 

for this parametric model have the useful property that they are easy to 

obtain fron the clipped process. 
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* 
Now let NfTjf)    denote the number of transitions of X   during the 

interval (0,T) from -1 to 1 and from 1 to -1.    From Leans 3 we HATS 

(15)      11*1. _ a,   N(T^ )A - P * 0 (t*) 
oo 

.2 where       p~    - 4    j f2 S(f)df and thus we have from (13), 
J -oo 

2 -2 ß    - /» \        r(r ♦ 1).    Thus from (15), we have 

(16) !!*!■-a,    N(T,r)A --f" [r(r ♦ 1)] 1/2 ♦ 0 (V2) 

The rate of binary transitions of X    - N(Tf V )/r - *•■ intimately 

eonncected with the rate of sero-axis crossings of X   provided the process 

X is 'well-behaved.'    To argue heuristically, select f  sufficiently small 

such that in any   "C unit interval, the probability of two or more axis- 

crossings can be neglected.    Since either there is one croesing or no 

crossing in each interval {k y ,k V *   f),    the number of axis-crossings 

of X in the broad interval (0,T) is  Just N(T^'V) and thus N(T,f )/t is the 

rate of axis-crossings of the time series. 

In order to give the variance of N(T,t')/t     we need the autocorrelation 

R(T) of X(t)  .    By taking the cosine transformation of (13), we have 

(17) R(f)    -   Re (1 -iXA^) ^ 

where i is the complex unit and Re z is the real part of a complex s.   We 

shall restrict r to be an integer for computational convenience in obtaining 

the sampling variances of several estimators. 
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tiling (17) in Lenna 4 along with the relations 

(18) 

R* Cr)   ..27rl   1.(1. i^iX)   -(r*i) 

*     (r) - - (2 TT)2   r-^—   Re (1 -^t^ ) * (r*2) 

where R   it the first deriratiTe of R with respect to    o   and R" is the 

second derivative, and changing variables    t • lyfrx,    ws have 

(19) llmr-0   Var [N(T ,-r )A] 

2 .ZtfT* 

-   IP- [ i (1 - J^p ) ar(t)dt . (Jj) ^j 

where 

T* -f   T p -2    [r(r*l)] 1/2 

Cb (t)]1/2 

(20a)       ajt) * —2—^    [1 ♦ c (t)arctan c (t)] - 1 
r 1 - s2 (t) r r 

2 2 
(20b)       br(t) - Cl - er (t) ] [1 - e^ (t)] 

-2Ädr   (t) t1- V^ V2(t) ] 

*    (Ä)2dt   (t) 
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_£_             2                                       2 
r*l • (t)d^ (t) - a  ..(t) [1-6,. (t)] 

(20c) o   (t) 2 1/2 1/2          
r [I-«; (t)]1/2 [br(t)]1/2 

r r 

r* r+1 .   .    2J*1 

(20d) d.(t) - r'nt (rx) - 
[1 - (^)2 ] r*1 

r* 
I    (JJ (-1)J (;) 2J 

(20«) •it) - R(rx) - ♦    9   r 
r Cl * (;) 2] r 

wher6 ^      If   r i. evn 

r   • 
2 

^   if   r Is odd 

r Ronmbttr that rA " 2/    f   S(f)df which ia the "man'' frequency of tht 

'o 

temporal ipectrum * 

We will now discuss the estimator related to the nunber of naxins and 

minima per unit interval.    Define the derivative process 
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h 

whore the oonrergence ie in the mean (Doob [ 2l )•    If X la a Gauaelan 

process with an autocorrelation R such that 

(22)   R("r) - 1 ♦ ^(0) ^-   ♦ lSU) (0) -—   ♦   0 (t5)        than X* exists 

almost evarywhere and la also Oau&slan (Doob [ 2] )•    Moreover, it can be 

easily shown that the autocovariar.-je of X   is -R (t'), where R   is the 

aecond derivative of R with respect to   f     *      If we nomalite X   by 

defining a process 

(23) Y(t)    - [-R"(0) r1/2   x'   (t) 

ws have E{Y(t)} - 0,    E(y2(t)} - 1 and 

(24)      E{Y(U V )Y(t)} - hr^-1 

R (0) 

If we let D(f) denote the spectral density of Y, we have from (2) and (24) 

(25) yVWtef - (2Tr)-2 [R^O)]"1 RU) (0) 

-   /f4 S(f)df/ /f2S(f)df 



. 

The process X has a relative maxima or minima at t If and only If 

x'Ct) - 0, and thus if and only If Y(t) - 0.    If we let M(T, T) be ths 

number of transitions from 1 to -1 and from -1 to 1 of the discrete 

process 

^1 If Y(kf) > 0 

(26) Y*(kr)    - 
(-1 If Y (kf) < 0 

for k - 0,1,,,,,1/f , then for small tT , M Is approximately the number 

of relative maxima or minima In the Interval (0tT), Therefore M(T/ t )fi 

Is essentially the rate of maxima and minima of X.    Using (23)» (25)» and 

(26) In Leuna 3* we have 

(27) li^^oo    M(T,'r)/T - 3* ♦ 0 (r2) 

- 2[yf^s(f)df/Xf2s(f)df]1/2 ♦ o(r2) 

where 3    Is the expected number of relative maxima or minima per unit 

Interval (Rice  [ 7] ). 

However we do not have to differentiate X In order to estimate 3 .    Let 

us define another discrete process 

1   If X((k*l) TT ) >   X(kr) 

(28) x**(kr) - 

-i if x((k*i) r) < x(kr) 

From the definition of X   and (26), it is fairly clear that the rate of 
** 

binary transitions of X     for sufficiently small  T" Is also M(T ^f )/T. 
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Applying (27) to the case of a Gamma spectrum, we heva 

2 ^2 
(29) ^-OD Md,^-)/*- $* -f [(r*2) (r*3) ] 

since from (13) 

yiAS(f)df - \"4r(r*l)(r*2)(r*3) 

We can obtain the yariance of M(T ,f )A fairly easily based on the deriva- 

tion of (19).    Applying (18) to {2U), we have    for the autocorrelation of I, 

(30)      E{T(f r )y(t)) - Red- 2\ir ) "(r*2) 

which,  from (17), is Just the autocorrelation of X with r replaced by r*2. 

Setting     —    T** - -E^- T and ß* - 2\"1 [(r*2)(r*3)]1^2   (just ß with 

r+2 instead of r),   we have 

(31)        Um Var[M(T,-r)A] 
•♦ 

■ ^r t^- (1- J^T* ) V2 (t)dt 
Jo 

which is the variance of N(T, f )/T as «iven by (19) and (20), but whsre 

r is rep.'^ed by r*2. 
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W« will now propose estlmAtors or r and k.    From (16) and (29) *• haw 

which ylalds 

2    «2 *4 **   7       L \/7 
(32)     r,?ß-p   * [ß   i us   ß ^ rr 

2(3      - P2) 

Let the estinator of r by r where 

2(M2.N2) 

for N - N(T,r)    and M - M(T ,r).    Thus from (16) and (29) w« ■•• that r la 

a consiitent estimator of r«    Since r is restricted to be an integer, choose 

[r] as the estimate of r where [r] is the cloeest integer to r.      [r] is also 

a consistent estimator of r given the stationarity of X,    But since X is in 

reality nonstationary, the consistency of the estimator is indeed a weak 

property.    The usefulness of r will be mainly determined by the variance of 

r, which we do not give since we have not developed the oovariance of N and 

M.    However, if in a certain application for a specified pair of parameters 

r and K, the variances of N/t and K/T are reaaonably small, then it it 

worthwhile to find the exact variance of r aa a function of T by Monte Carlo 

techniques.    In the case of mean frequencies 20 cps < rA 40 cps,  [r] had a 5% 

standard deviation for T of lass than a minute. 
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Again fron (16), 

A 

is • consistent estimator of \, 

Both r and \ are relatively easy to compute fron a sequenoe of discrete 

observations on the dipped version of the time series X(t).    Sines in a great 

■any applications dealing with the above type of nonstationary tins series, 

the process is first subjected to infinite clipping, the estimation method 

given above offers a practical procedure ftr dealing with the changes of the 

harmonic power levels over time, 

U*    Entodic Results for the Rate of Axis-Crossings 

Let N(T) be the number of sero-axls crossings of X(t) in the interval (O^T) 

and assuming that E(x(t)) - 0 and E(N(T)} < 00, define 

(34) P - limn 

At first glance it looks as if ß is a function of T. If X(t) is strictly 

stationary than for all T, the expected number of ssro-crossings in any 

T unit Interval is the same as E{N(T)). Now if ws ohooss any unit of tins 

f    and 1st K bs the positive integer K - T/f, then from (34) 

a - (Kr r1^ E{N(f)} - r"1 E{N(r)} 
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and thus 0 is not a function of T. 

Rice [7] »hows that if X is Gaussian, 3 - 2[ ^ACf )df 31/2 whars S(f) 

is the spectrua of X.    Ha*everf in Rice's derivation and also in NoFadden's [6], 

it is assuned that a X can be found sufficiently saall such that in the 

interval (t, t ♦ f)t the probability of exactly one axis-creasing is siaplj 0 

and the probability of two or ■ore croaainge can be neglected«    This assuaption 

should be carefully considered since if X is vM.te noise, there are infinitely 

■any seres in any interval.   We will now give three sinple leasaa «hioh will 

show that N(T)/T is a consistent estimate of 0; that the second ■oatent of the 

spectrua of a Gauseian process (if it exists) can be estiaated free» discrete 

clippingj and then give the variance of the consistent estiaator« 

Leama li    Let X(t) be a strictly stationary and astrioally transitive (DoobC2]) 

randca process and N(T) be the nuaber of axis-crossings in the interval (0fT)# 

Assuas that E(N(T)) exists.    Then as T -» eo 

N(T)A-P 
with probability one. 

Proof 1    Express T in integer aultiples of a convenient unit T,i.e. T • tX for 

a positive integer K,    Let N.  denote the nuaber of axis-crossings of X in the 

interval ((k-l)'r ,k f) for k-lt,,.fK Thus we have 
K 

(35) M(T) -   ^    ^ 

Since X is strictly stationary and astrioally transitive, so is the discrete 

process {N.}.    Thus we have the ergodio result that   as K-»oo# with probability 
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K 
(36)      rx   ^ N - E{Nj 

k-1 K     K 

But from  (34), E^} •= ß T* and thus by using (35) In (36) and diYldlng 

by 1^ we hav« the desired result. 

Lemma 2t Let X(t) be a strictly stationary and metrically transitive 

random process. Given a T , define the discrete process 

/I if X(k T) > 0 

X*(k'r) - i 
-1 if X(k r) < 0 

for the integers k ■ 0. 1, ... .  Let N(T, f ) denote the number of transi- 

tions of X from 1 to -1 and from -1 to 1 in the Interval (0VT) where 

T - K f .  Let R ( lr) - E{X (k t-) X ((k*l) T)) which does not depend 

on k since X is strictly stationary and metrically transitive. Then 

N(T, TO/T- (2 r) '1 [1 - MT)] 

with probability one as T -» co, 
* 

Proof:    By the ergodicity of X ,    the sample autocorrelation 

K—1 
(37)        R'CT)-^     i     x* ((kn)Tr) x* (kr) 

T R     k-0 

cenrerges with probability one to the autocorrelation R as K - T/f—co, 

Applying the definition of X to (37) we have 
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R^    (tT) - K"1 [K-2N(T, -Z^)  ] 

«nd thu« by dividing by *>  in the convergence FL -* R # we have the desired 

result. 

New suppose X(t) is stationary Gaussian process where £{X(t)) ■ 0 and 

F'{x (t)} • 1.    It then possesses the properties required for the leases. 

Thus N(T)/t -> ß with probability one as T-» oo end sisdlarl}' for Loaa 2.    Frc 

Slepian [8] we can show Rice's [7] result that 

(39) (. - Tf  -1 [-R-W]1/2 * 2 t  i    ^(f)«)172 

given that R is twice continuously differentiable at t^ ■ 0« 

But lawson and Uhlenbeck [5] ehcw that 

(40) R*( f) - 2 TT"1 aroein R( Z ) 

By series expansion of aroein in powere of ^ t we can ehow fro« (40) 

(a)      ^ Vi ^   - 7r'1 ^«"(o)]1/2 

[-R«(0)r/2 24^ 

where new we sssiuee that R has the expansion 

(42)       R(ir) -1 ♦ R-(O) -|- ♦ RU) (0) ^- ♦ o(tr5) 

Proa (39),  (41) and Lena 2 we hav 
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La— 3t Suppose X(t) is s stationary Gaussian process with an auto- 

oorrslatien function R( f) as given by (U2),    Than with probability one 

li«r_0      li-r^o    N(T,r)A-ß 

and 
, 2 

U^T^«     [N(T.r)A-0] -"^-t2 {[yf2S(f)df]2-yf43(f)df) 

♦ 0 (TT3) 
where S(f) is the spectral density of X. 

Ws will not dsrive the Yariance of N(T# 'V )/T as a function of T, f, 

and 3.    Fron (38), Lemma 3» and K • T/f we have 

(43)     ECR^ ( Tr)]2 - 1 - 43 r   ♦ 4 E[N(T, 2r )A]2   ^f2 

♦ 0 (f3) 

and fr« (37) 

K-l   K-l 
(U)      E[R!  CT)]2 - K"2      E        E      E{X*(k*l)r) X*(kf)X*((M) t-)X*(j^')) 

1 k-l    J-l 

Let D(x, f) denote the conditional probability that X(t) crosses the 

axis in ths interval (xtx* f)    given that it crosssd in (0, f),    For 

Gaussian X(t)l Rice [73 derives a function U(x) such that 

c 

D(x, 7") • U(x)Tr* 0(T-2) and y        U(x)dx - 1 as   c - 0. 
-c 
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Since the probability of the process crossing the axis in the intervml 

(0, ^O is ß T ♦ 0( f2), we then hsve for  * - J I " n > 1 

Us*)     E{x*(k*i) r)x*(k ^')x*((j*i) -r)x*(j r)) 

- uCn-r) -2r(P?r) - 2[i-u(n f )Tr(p'2r)) 

♦ {i-u(mr) (ß-r) -2[i-ü(n'Zr)^(p-f)) 

♦ o(r3) 

- 1 - 4ß TT- ♦ 4 U(n T-)? f2 ♦ 0( TT3) 

and for k - J 

USb) E{X*(k*l)'r)X*(k'Zr)X*( (j*!)^ )X*(j Tr) - 1 

Setting (45) in (UU)  end sunsing, we have 

U6) E(yTr)]2 - i-^-r* epr2 T'1  L  (i-^)u(nr)^r 
n-l 

♦ o(-r3) 

end thus from (43) 

(47) E[N(T. r )A]2 - "I2-  E (l-^mnTr)'*' 
n-l ., 

Letting f go to «ero in (47) and since  ^^Vo     U(x)dx - J 

we have 

(48)   li"-^ Var[N(T, r)A] " "f2-    (1-f) U(x)<ix 

^-P2 
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If X la Oausalan with autocorrelation Hf),  using Rlca'a derivation of U(x), 

we have 

Lemma 4; 

ll^., 0 Var[N(T, lr)M  - p2{| I  (l-f)A(x)[l ♦ D(x)arct«n a(x)]dx 

Jo* 

T[-R"(0)r/<d 

where 

A(x) - [B2(x) - C2(x)] 1/2 [1- R2(x)r3/2 

B(x) - 1 - R2(x) ♦ CR-CO)]"1 [R»(x)]2 

C(x) - R(x) [R^O)]"1 [»'(x)]2 ♦ R"(x) CR^O)]"1 [1-R2(x)] 

D(x) - C(x) [^(x) -C^x)] "1/2 

This la alallar to the result of Steinberg, et.al. [10] 
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